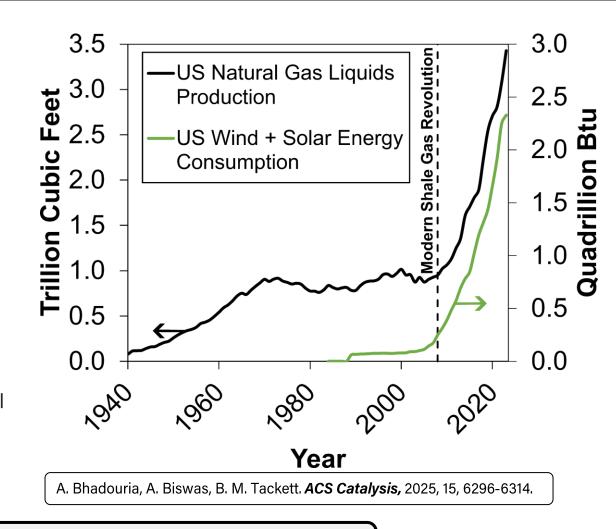
Electrochemistry and Safety

Brian M. Tackett
Assistant Professor of Chemical Engineering
Purdue University

P2SAC Fall 2025 Conference December 2, 2025


Motivation: Opportunity for Electrochemical Processes

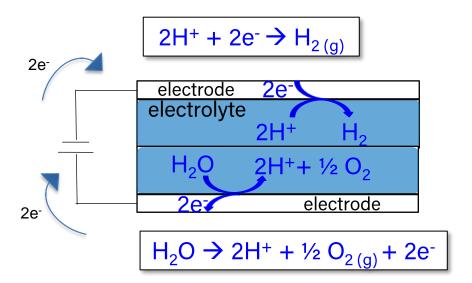
The <u>Energy Transition</u> + <u>Shale Gas Revolution</u> create unprecedented opportunities (and need) for electrochemical systems

- Most chemical processes developed over the last ~100 years
 - Energy only available in the form of heat (combusting coal, oil, and gas)
- Fuel → heat → electricity → industrial process
 is inefficient, when electricity can just be cut out

For the first time in history, we have substantial energy in the form of electricity produced via wind & solar

- At the same time, US also has abundant feedstock to make essential chemicals
- This allows us to reimagine a sustainable and electrified chemical industry

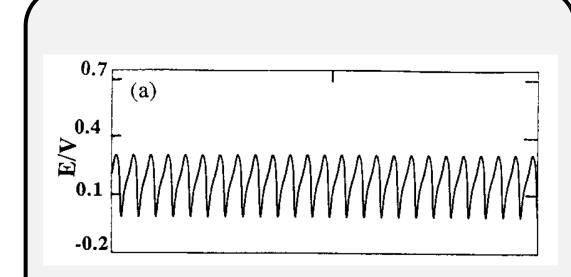
How do we ensure these electrochemical systems are safe?



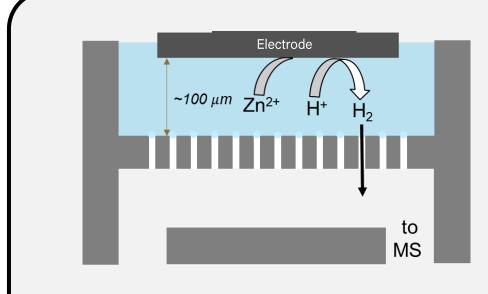
Review: Electrochemical Reaction Fundamentals

3 elements of an electrochemical reaction:

- Molecular transformation where an electron (e⁻) is a reactant or a product
- Inherently heterogeneous process with at least
 phases
 - Electron conducting phase (electrode)
 - Ion conducting phase (electrolyte)
- 3. Contains 2 electrodes to maintain electroneutrality


- **Current = reaction rate** (rate of flow of electrons)
- Voltage = driving force (impetus for electron flow)

Let's leverage these principles to support a safe and electrified chemical industry


Two Examples

Electrochemical Manufacturing

 Oscillatory instabilities can occur in almost any E-chem reactor, posing operation hazards

Electrochemical Energy Storage

 Aqueous batteries are inherently safe, but abundant water/H+ causes issues with viability

Manufacturing: safe(r) Echem alternatives

From P2SAC Spring '25:

- We can come up with good ideas for electrochemical replacements for hazardous or inefficient process
- But what hazards will be associated with electrochemical reactors?

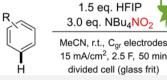
Case Study 2: Mononitrotoluene Synthesis

The incident

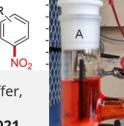
- Oct 13, 2002, Pascagoula, MS First Chemical Corp. Produce isomerically pure MNT- used for dyes, rubbers, and agricultural chemicals.
- Process:
 - Reaction:

$$HNO_3 + 2H_2SO_4 \leftrightarrow NO_2^+ + H_3O^+ + 2HSO_4^+$$

 $C_6H_5CH_3 + NO_2^+ \rightarrow C_7H_7NO_2 + H^+$


- · Initial Separations: remove excess acid and toluene
- 3-column Distillation: separate ortho-, meta-, and para-MNT
- Hazard: Mononitrotoluene (C₇H₇NO₂), similar to TNT, can explosively decompose at temperatures > 230 C

Electrochemical Alternative


Electrochemical nitration via nitrite at room temperature

$$NO_2^- \rightarrow NO_2 + e^-$$

this work:

S. P. Blum, C. Nickel, L. Schäffer, T. Karakaya, S. R. Waldvogel, ChemSusChem 2021, 14, 4936.

Challenge: can this be efficient in continuous flow? Can it result in isomerically pure MNT w/out distillation

Reactivity Hazards for Continuous Reactors

Thermochemical Reactors

Runaway Reactions $\dot{\mathbf{Q}}_{rxn} > \dot{\mathbf{Q}}_{rem}$.0 Heat generation due to Heat removal due exothermic process to cooling Q_{rxn}

Heat generated via reaction exceeds heat removed via heat-exchange

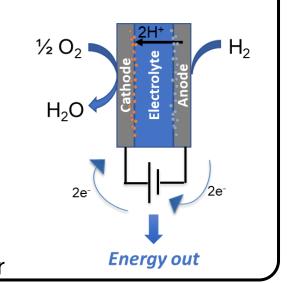
Temperature

Hazardous scenarios understood by analyzing *multiple steady states*

Electrochemical Reactors

Runaway Reactions?

- Echem rxns don't experience substantial T effects as result of reaction
- Energy of reaction manifests as electron potential, rather than heat


$$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$$

$$\Delta H_{rx} = -242 \text{ kJ/mol}$$

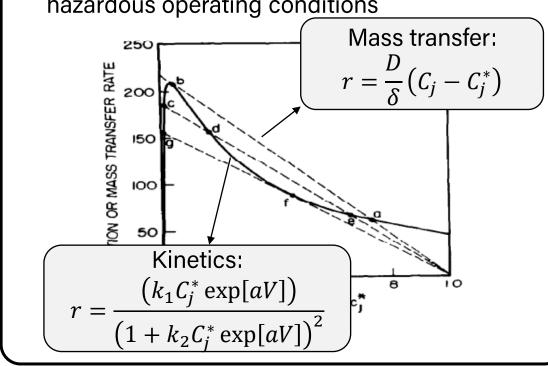
1.23 V @ 298K


in electrochemical reactor

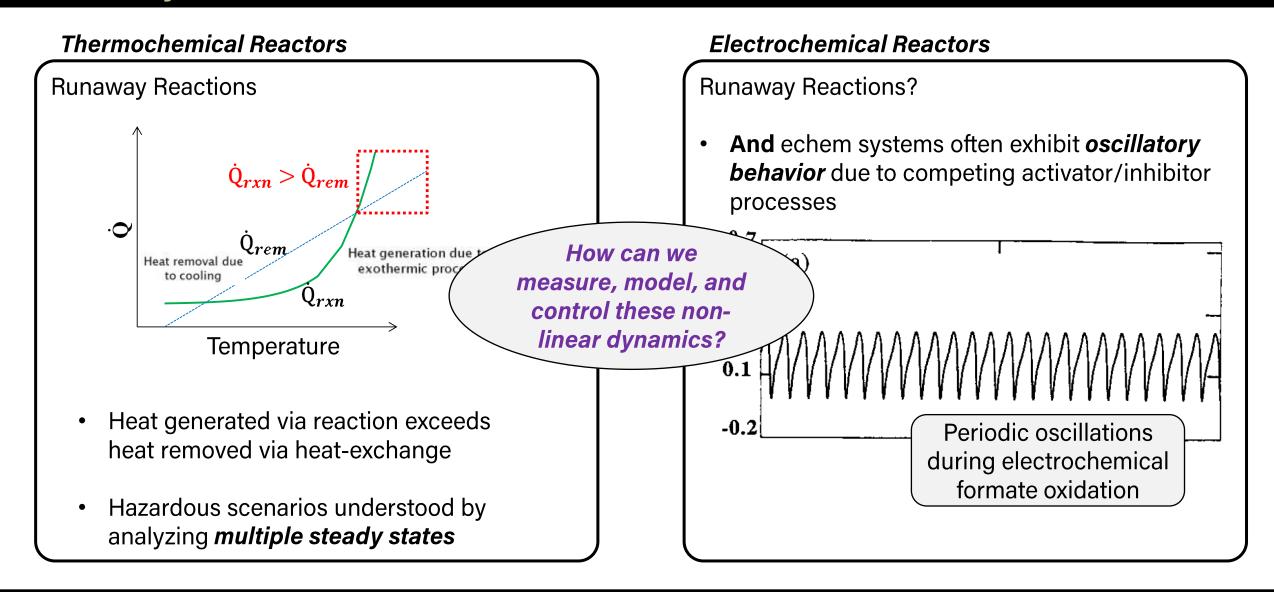
Reactivity Hazards for Continuous Reactors

Thermochemical Reactors

Runaway Reactions

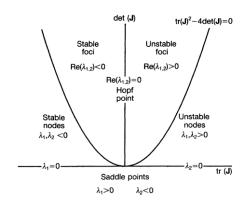


- Heat generated via reaction exceeds heat removed via heat-exchange
- Hazardous scenarios understood by analyzing multiple steady states


Electrochemical Reactors

Runaway Reactions?

 But echem reactors can still experience multiple steady states, creating potentially hazardous operating conditions



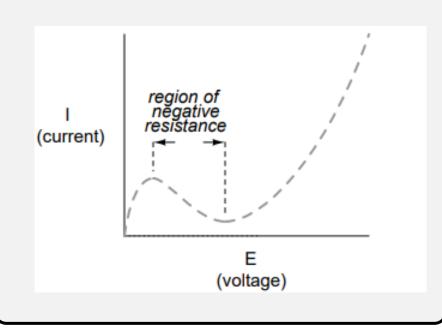
Reactivity Hazards for Continuous Reactors

For a Single Reaction (O + $e^- \rightarrow R$):

Stability understood as interplay of kinetics and mass transport

Charge Balance

$$\frac{d\phi_{dl}}{dt} = \frac{U - \phi_{dl}}{RC_dA} - \frac{I_F}{C_dA} = f_1(C_o, \phi_{dl}) \quad I_F = -nFAk_fC_o(0, t)$$


Mass Balance

$$\frac{dC_{o}(0,t)}{dt} = \frac{2D_{o}}{\delta^{2}} \left(C_{o}^{bulk} - C_{o}(0,t) \right) - \frac{2k_{f}C_{o}(0,t)}{\delta} = f_{2}(C_{o},\phi_{dl})$$

$$J = \begin{bmatrix} \frac{df_{1}}{d\phi_{dl}} & \frac{df_{1}}{dC_{o}} \\ \frac{df_{2}}{d\phi_{dl}} & \frac{df_{2}}{dC_{o}} \end{bmatrix}$$
Both eigenvalues of J must be negative for the system to be stable

Prerequisite for oscillation: $\frac{\partial \phi_{dl}}{\partial I_F} < 0 \qquad \& \qquad R_S > \left| \frac{\partial \phi_{dl}}{\partial I_F} \right|$ Negative Large

Differential "system" Resistance resistance

For a Multiple Reactions / Multiple Pathways:

Oscillations can arise due to competing kinetics

Ex) electrochemical formate oxidation:

$$HCOOH \rightarrow CO_2 + 2H^+ + 2e^-$$

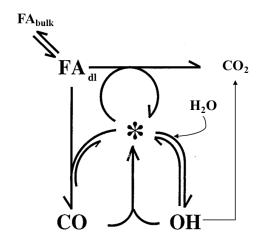
Direct Pathway

$$HCOOH_{aq} + * \leftrightarrow * HCOOH$$

$$*HCOOH \rightarrow *COOH + H^+ + e^-$$

*
$$COOH \rightarrow CO_2 + H^+ + e^-$$

Indirect Pathway


$$HCOOH_{aq} + * \leftrightarrow * HCOOH$$

$$* HCOOH \rightarrow * COOH + H^{+} + e^{-}$$

*
$$HCOOH \rightarrow * CO + H_2O$$

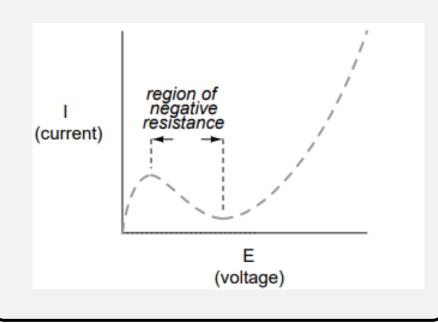
$$H_2O + * \leftrightarrow * OH + H^+ + e^-$$

$$*CO + *OH \rightarrow CO_2 + H^+ + e^- + 2*$$

Poisoning of Surface

Oxidation of Surface

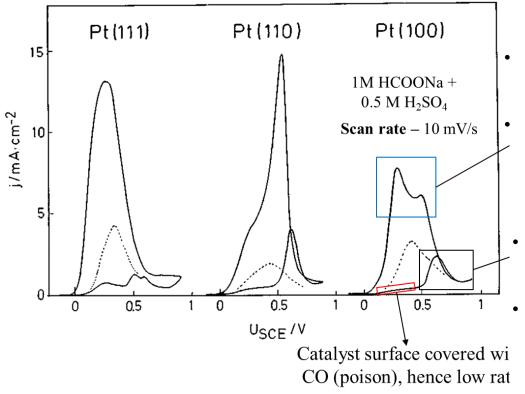
Removal of Poison


Prerequisite for oscillation:

$$\frac{\partial \phi_{dl}}{\partial I_F} < 0$$
 &

$$R_s > \left| \frac{\partial \phi_{dl}}{\partial I_F} \right|$$

Negative **Differential** Resistance


Large "system" resistance

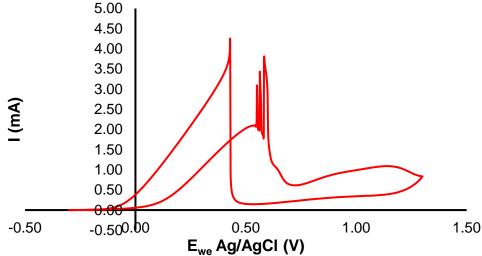
For a Multiple Reactions / Multiple Pathways:

Oscillations can arise due to competing kinetics

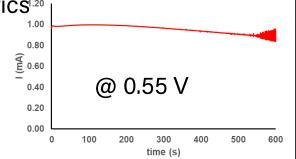
- Ex) electrochemical formate oxidation:
 - @ low solution resistance (R_s)

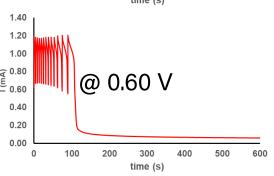
- Reverse scan <0.7V-Desorption of OH and FA oxidation.
- 0.5 0.3 V- CO is slow
 to poison, direct FA oxidation
 - 0.5-0.7 V- PoisonedCO removed byadsorbed OH0.7 V AdsorbedOH acts as a poison

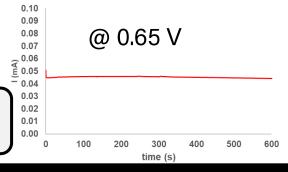
Prerequisite for oscillation: $\frac{\partial \phi_{dl}}{\partial I_F} < 0 \qquad \& \qquad$ Negative Large **Differential** "system" Resistance resistance region of (current)


(voltage)

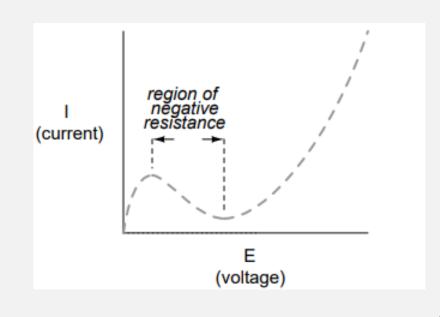
For a Multiple Reactions / Multiple Pathways:


Oscillations can arise due to competing kinetics^{1,20}


Ex) electrochemical formate oxidation:
 @ 100 Ω resistance (R_s)



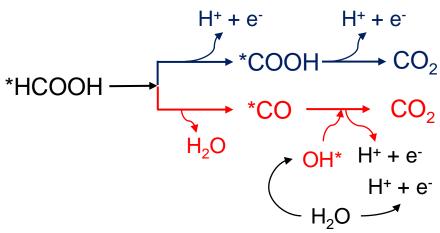
Current is rate - so what is happening chemically when current oscillates?



Prerequisite for oscillation:

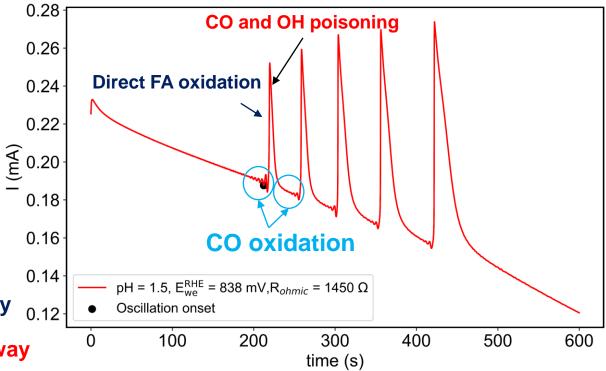
$$\frac{\partial \phi_{dl}}{\partial I_F} < 0$$
 & $R_S > \left| \frac{\partial \phi_{dl}}{\partial I_F} \right|$

Negative Differential Resistance Large
"system"
resistance



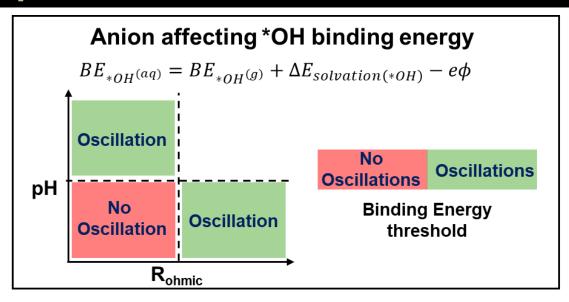
Implications of Electrochemical Oscillations

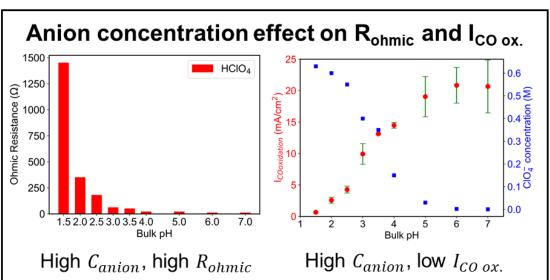
For a Multiple Reactions / Multiple Pathways:

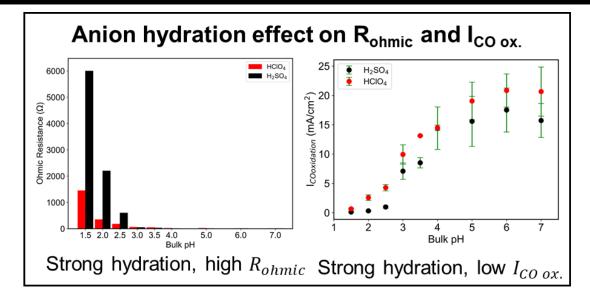

Oscillations can arise due to competing kinetics

• Ex) electrochemical formate oxidation:

Direct pathway


Indirect pathway



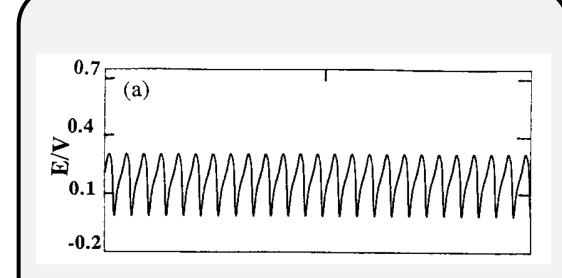

Many factors can influence these unstable behaviors

Capon, Andrew, and Roger Parsons. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1973, 45.2: 205-231.

Implications of Electrochemical Oscillations

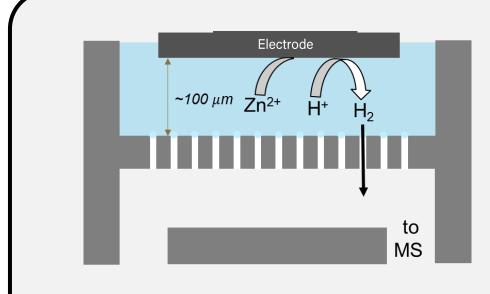
Future Work

Estimating *OH binding strength


- CO displacement experiments with different anion concentrations.
- CO displacement experiments with anions of varying hydration.

pH-dependent microkinetic model

Approximating the rate coefficients as a function of pH.


Two Examples

Electrochemical Manufacturing

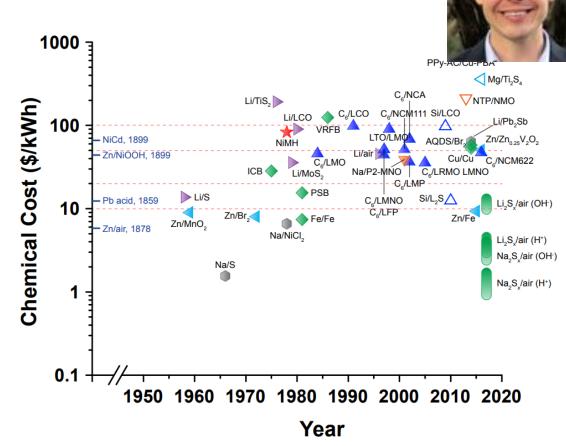
 Oscillatory instabilities can occur in almost any E-chem reactor, posing operation hazards

Electrochemical Energy Storage

 Aqueous batteries are inherently safe, but abundant water/H+ causes issues with viability

Electrochemical Energy Storage: Enabling Zn metal batteries

Zn metal batteries can support grid-level storage


- Zn is cheap, abundant, non-hazardous
- Anode reaction is simple aqueous electrodeposition

$$Zn^{2+} + 2e^{-} \rightarrow Zn^{0}$$

Uneven Zn plating hinders battery stability

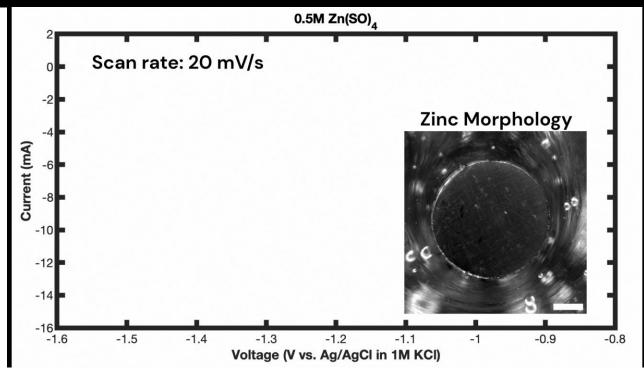
Electrocatalytic hydrogen evolution reaction (HER) is undesired and contributes to uneven Zn deposition/instability

$$2H^{+} + 2e^{-} \rightarrow H_{2}$$

Y.-M. Chiang, et al. Joule, 2017, 1: 306-327.

Electrochemical Energy Storage: Enabling Zn metal batteries

Zn metal batteries can support grid-level storage


- Zn is cheap, abundant, non-hazardous
- Anode reaction is simple aqueous electrodeposition

$$Zn^{2+} + 2e^{-} \rightarrow Zn^{0}$$

Uneven Zn plating hinders battery stability

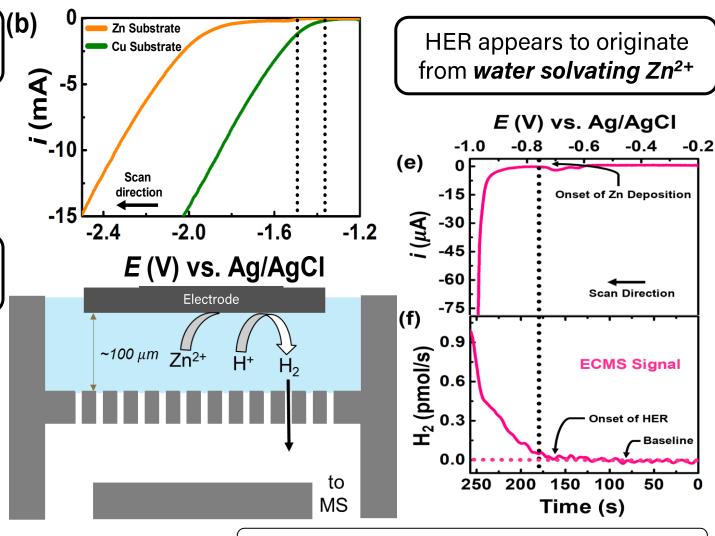
• **Electrocatalytic** hydrogen evolution reaction (HER) is undesired and contributes to uneven Zn deposition/instability

$$2H^{+} + 2e^{-} \rightarrow H_{2}$$

Strategy: Use an electrode/electrolyte that disfavors catalytic H_2 formation without hindering Zn plating

Challenge: Both reactions contribute to current simultaneously

K. Roy, A. Rana, J. N. Heil, B. M. Tackett, J. E. Dick. *Angew. Chem. Int. Ed.*, 2024, 63: e202319010.


EC-MS Analysis of Zn plating and HER

Typical Approach: Measure catalytic HER in the absence of Zn²⁺ to isolate kinetics of unwanted reaction

- In the absence of Zn²⁺, HER onset is:
 - ~-1,35 V on Cu electrode
 - ~-1,50 V on Zn electrode

Our Approach: Measure HER partial current with EC-MS in the presence of Zn²⁺

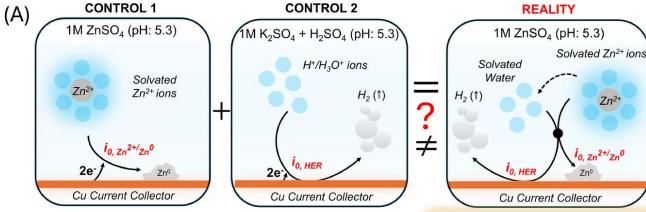
- In the **presence of Zn²⁺**, HER onset is:
 - ~-0.8 V on Cu electrode
 - Coincident with onset of Zn²⁺ reduction

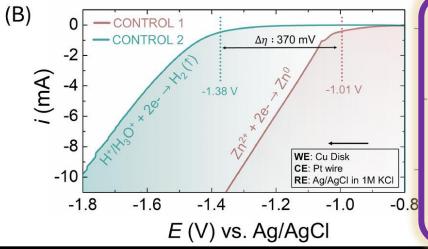
A. Rana, K. Roy, J. N. Heil, J. H. Nguyen,, C. Renault, B. M. Tackett, J. E. Dick. *Adv. Energy Mater.* 2024, 14, 2402521.

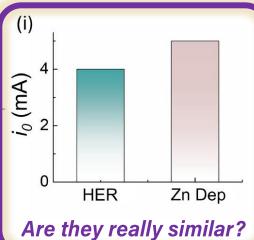
EC-MS Analysis of Zn plating and HER

Typical Approach: Measure catalytic HER in the absence of Zn²⁺ to isolate kinetics of unwanted reaction

- In the absence of Zn²⁺, HER onset is:
 - ~-1.35 V on Cu electrode
 - ~-1.50 V on Zn electrode


Our Approach: Measure HER partial current with EC-MS in the presence of Zn²⁺


- In the presence of Zn²⁺, HER onset is:
 - ~-0.8 V on Cu electrode
 - Coincident with onset of Zn²⁺ reduction


A. Rana, S. Paul, A. Bhadouria, A. Bano, J. H. Nguyen, Md. A. Faisal, K. Roy, B. M. Tackett, J. E. Dick. *Adv. Energy Mater.* 2025, e03155.

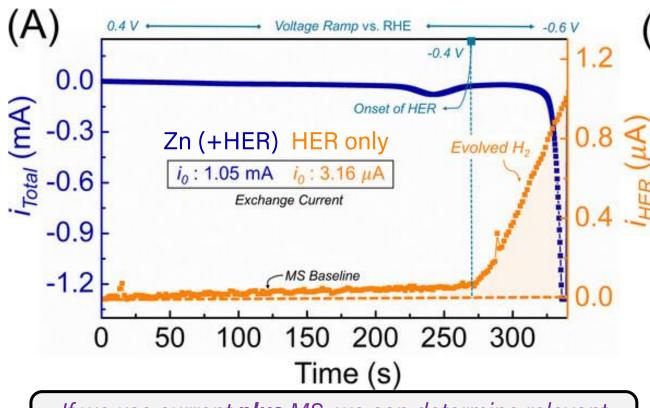
What is implication for intrinsic kinetics?

$$i = i_0 \exp\left[\frac{\alpha FV}{RT}\right] \rightarrow i_0 \approx k$$

EC-MS Analysis of Zn plating and HER

Typical Approach: Measure catalytic HER in the absence of Zn²⁺ to isolate kinetics of unwanted reaction

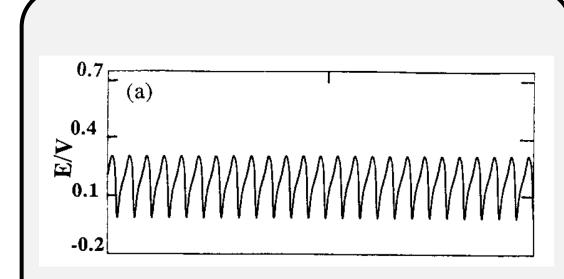
- In the absence of Zn²⁺, HER onset is:
 - ~-1.35 V on Cu electrode
 - ~-1,50 V on Zn electrode


Our Approach: Measure HER partial current with EC-MS in the presence of Zn²⁺

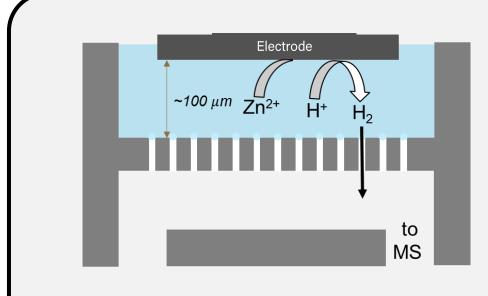
- In the presence of Zn²⁺, HER onset is:
 - ~-0.8 V on Cu electrode
 - Coincident with onset of Zn²⁺ reduction

A. Rana, S. Paul, A. Bhadouria, A. Bano, J. H. Nguyen, Md. A. Faisal, K. Roy, B. M. Tackett, J. E. Dick. *Adv. Energy Mater.* 2025, e03155.

What is implication for intrinsic kinetics?


$$i = i_0 \exp\left[\frac{\alpha FV}{RT}\right] \rightarrow i_0 \approx k$$

If we use current **plus** MS, we can determine relevant kinetics for rational improvement


Two Examples

Electrochemical Manufacturing

 Oscillatory instabilities can occur in almost any E-chem reactor, posing operation hazards

Electrochemical Energy Storage

 Aqueous batteries are inherently safe, but abundant water/H+ causes issues with viability

Acknowledgements

- Piyush Sharma (oscillations & instabilities)
- Prof. Can Li
- Esin Aydemir (aqueous Zn batteries)
- Prof. Jeffrey Dick (Purdue Chemistry)
- Ashutosh Rana

